Synthesis and First Separation of Chiral Trimetal Carbonyl Clusters containing an RuCoMo(μ_3 -S) Core

Er-Run Ding,^a Qing-Shan Li,^a Yuan-Qi Yin^{*a} and Jie Sun^b

^aState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China ^bShanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China

Clusters $RuCoMo(\mu_3-S)(CO)_8C_5H_4R$ [R = HC(O) **2**, MeC(O) **3**, PhC(O) **4**, MeOC(O)C₆H₄C(O) **5**] were obtained by the reaction of $(\mu_3-S)RuCo_2(CO)_9$ **1** and [M(CO)₃RC(O)Cp]⁻, clusters **3** and **5** have been solved by single crystal X-ray diffraction and cluster **3** was resolved on amylopection tris(phenylcarbamate) (ATP) chiral stationary phases (CSPs).

Transition-metal cluster compounds are currently under intensive scrutiny because of their potential catalytic applications, both as models for understanding catalytic metal surfaces¹ and as catalysts in their own right.³ Our interest in the reactivity of chiral clusters prompted us to prepare tetrahedral skeleton complexes containing RuCoMoS cores and to find a good method of resolution of enantiomers by liquid chromatography on CSPs.

Refluxing a solution of NaMo(CO)₃(C₅H₄)R [R = HC(O), MeC(O), PhC(O), MeOC(O)C₆H₄C(O)] with cluster **1** in THF gave clusters **2–5** in moderate yield (Scheme 1). Reduction of cluster **3** by NaBH₄ in methanol at room temperature gave cluster **6**. The IR spectra of all clusters exhibited a large number of absorption bands between 1856 and 2087 cm⁻¹, which were assigned to terminal carbonyl vibrations. The spectra of the cluster **6** revealed OH absorption peaks at 3383 cm⁻¹. These results are consistent with the reduction of the C=O groups (1686 cm⁻¹) in cluster **3** by the action of NaBH₄.

The structures of clusters **3** and **5** were determined by X-ray structure analysis and crystal data are collected in Table 1. The structure of cluster **3** unexpectedly reveals the presence of two isomeric molecules **A** and **B** in the unit cell (Fig. 1). Each unit displays a RuCoMoS tetrahedral geometry. The acute angles in the tetrahedral core of cluster **3** about the basal atoms range from 50.12 to 64.09°, and those about the sulfur atom average 73.46°, which deviate considerably from perfect tetrahedral geometry. This results because the metal–metal bonded RuCoMo triangle restricts

 $\mathsf{R}=\mathsf{HC}(\mathsf{O}) \ \textbf{2} \ \mathsf{MeC}(\mathsf{O}) \ \textbf{3} \ \mathsf{PhC}(\mathsf{O}) \ \textbf{4} \ \mathsf{MeOC}(\mathsf{O})\mathsf{C}_{6}\mathsf{H}_{4}\mathsf{C}(\mathsf{O}) \ \textbf{5}$

Scheme 1

the angles around the sulfur atom. The distances from the sulfur atom to the metal are not equal [Ru–S 2.330(3) Å, Mo–S 2.37692) Å, Co–S 2.205(3) Å]. The Ru–S bond length is roughly equal to that in a known complex HRu₃(CO)₉[(μ_2 -S)Mo(CO)₃(NCMe)₂] (Ru–S 2.334 Å) but is shorter than that found typically.¹¹ Cluster **5** contains a tetrahedral skeleton formed by Ru, Co, Mo and S, the slightly distanced triangular Ru–Co–Mo moiety being capped by a sulfide ligand as in cluster **3** (Fig. 2. The distance of the Mo atom to the Cp ring center is 1.992 Å. Treating μ_3 -S as a four-electron donor, cluster **5** contains a total of 48 valence electrons and is electronically saturated.

Complex	3	5
Formula	C ₁₅ H ₇ O ₉ SRuCoMo	C ₂₂ H ₁₁ O ₁₁ SCoRuMo
M _w	619.22	739.11
Crystal system	Orthorhombic	Triclinic
Space group	Pbca	P <u>1</u>
a/Å	26.229(7)	8.174(3)
b/Å	18.200(6)	19.454(4)
c/Å	15.929(4)	8.042(3)
α/°		92.78(2)
$\beta/^{\circ}$		108.74(3)
v/°		88.73(1)
Z	8	2
V/Å ³	7604(6)	1209.5(7)
$D_{\rm c}/{\rm g~cm^{-3}}$	2.163	2.030
λ/Å	0.71069	0.71069
T∕°C	20	20
μ (moK α) cm ⁻¹	24.51	19.51
F(000)	4768.00	720.00
No observations $[/ > 3.00\sigma(/)]$	3343	2674
Total no. reflections	4883	3861
Residuals: <i>R</i> , <i>R</i> _w	0.033, 0.045	0.056, 0.074

Table 1Summary of crystal and intensity data for complexes 3 and 5

*To receive any correspondence (e-mail: hcom@ns.lzb.ac.cn).

J. Chem. Research (S), 1998, 624–625 J. Chem. Research (M), 1998, 2601–2657

Fig. 1 Crystal structure of cluster 3

Fig. 2 Crystal structure of cluster 5

In our attempts to separate the enantiomers of 3 we found that a general separation procedure did not apply. However, an enantiomer separation *via* chromatography over an optically active adsorbent was successful. The chiral ability of the CSP depends on the thickness of the

Fig. 3 The chromatograms of resolution of the cluster **3** on a 15% ATP-coated column Mobile phase: hexane–propan-2ol = 95:5 (v/v); Flow rate: 0.5 ml min⁻¹; 0.02 AUF

coating. Usually, the greater the amount of chiral agent, the better the chiral discrimination. For coated cellulose CSP, Okamoto *et al.*¹² chose a coating of *ca.* 20–25 mass%. However, we found that this level resulted in low optical resolution on the 25 mass % ATP-coated phase; a coating of 15 mass % appeared to be optimal. This indicates that it is important to reduce non-chiral interactions with Si–OH or $-NH_2$ groups by a well distributed and ordered coating and overloading may destroy this characteristic. Fig. 3 shows the chromatogram of **3** on a 15 mass % coated phase.

We are grateful to the Laboratory of Organometallic Chemistry at Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences for the financial support of our work.

Techniques used: 1R, ¹H NMR, MS, HPLC

Table 2: Atomic coordinates and B_{iso}/B_{eq} for cluster 3

Table 3: Atomic coordinates and B_{iso}/B_{eq} for cluster 5

Table 4: Selected intramolecular distances (Å) and bond angles (°) for cluster ${\bf 3}$

Table 5: Selected intramolecular distances (Å) and bond angles (°) for cluster ${\bf 5}$

Table 6: The effects of propan-2-ol concentration on the resolution

References: 18

Appendix: Crystallographic data for cluster 3 and 5

Received, 19th February 1998; Accepted, 15th June 1998 Paper E/8/01418C

References cited in this synopsis

- 1 G. Süss-Fink, Angew. Chem., 1994, 104, 71.
- 3 J. R. Shapley, Strem Chem., 1978, 6, 3.
- 11 L. A. Hoferkamp, G. Rhenwald, H. Stoeckli-Evans and G. Suss-Fink, Organometallics, 1996, 15, 704.
- 12 Y. Okamoto, K. Hatada, T. Shibata, I. Okamato, H. Namikoshi and Y. Yuki, *Eur. Pat. Appl.*, 1984, EP 147804.